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Abstract
Deep neural networks are often seen as black-

boxes, producing an output without explana-

tion. Explainable Arti�cial Intelligence (XAI)

methods improve our understanding of these

often opaque networks. So called post-hoc

methods have most often been applied to clas-

si�cation tasks in order to determine the rel-

evance of input variables. This work focuses

on implementing the post-hoc XAI methods

LRP, DeepLIFT, LIME and SHAP for the task

of object detection using the Single Shot De-

tector (SSD) model architecture. All methods

are further compared regarding human inter-

pretability, faithfulness and applicability. Here,

the necessity of a robust propagation rule for

backpropagation-based methods is shown and

discussed.

1 Introduction
In the last decade, deep neural networks have

become a powerful tool in a variety of areas

like science, business and engineering [Pan15].

Although the application of deep learning mod-

els can lead to highly accurate predictions, the

decision process is generally opaque due to a

large parameter space (millions of parameters).

In application areas like automated driving or
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disease detection, where predictions can have

a large impact on human lives, transparency

and traceability is crucial [Hol+19]. In fact, ex-

planations of reasoning mechanisms for such

applications are already legally regulated in

the European Union by the General Data Pro-

tection Regulation [16].

Various XAI techniques and ideas have been

developed and applied in the past to increase

transparency [TG20]. On one hand, models

that are interpretable by design can be used,

or the architecture can be changed in order to

improve interpretability. On the other hand,

oftentimes opaque standard architectures (e.g,

ResNet [He+16] or VGG [SZ14]) with pre-

trained parameters are used as starting points.

Then, explanations can also be generated by

means of external techniques (post-hoc ex-

plainability). These two di�erent views can

also be seen as solving the black-box problem

against explaining the black-box [Gui+18].

In the case of deep neural networks, architec-

tures are in general not interpretable, but can

be changed in order to improve transparency

(e.g. by adding/changing layers). One example

is the Concept-Whitening-Layer, introduced

by Chen et al. [CBR20], which can be used to

align the latent space in order to better inves-

tigate the learned concepts of a model.

Regarding post-hoc explainability for deep

learning models, feature relevance explana-

tion methods are widely used [Arr+20]. These
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methods clarify the inner functioning of a

model by computing a relevance score for the

input.

This work compares four feature relevance ex-

planation methods: LRP [Bac+15], DeepLIFT

[SGK17], SHAP [LL17] and LIME [RSG16].

In the �rst two sections, the methods are intro-

duced and applied to the domain of bounding

box detection using the Single Shot Detector

(SSD) model [Liu+16]. Thereafter, the four

methods are compared regarding faithfulness,

human interpretability and applicability fol-

lowed by a conclusion. In order to evaluate

the faithfulness of explanations, localization

and pixel-�ipping experiments are performed

and evaluated. For applicability and human

interpretability, run time and heatmap entropy

is measured, respectively.

1.1 Related Work
In order to compare and evaluate explanation

heatmaps, several techniques have been de-

veloped in the past years. They can be cate-

gorized into “sanity” checks, localization and

insertion/deletion experiments, human inter-

pretability assessments and applicability tests.

Sanity Check Model parameter randomiza-

tion can be used to check the “sanity” of ex-

planations, i.e. whether the methods adhere to

and are sensitive to parameters of the model

[Ade+18; HLA21]. The idea is that the change

in an explanation should be correlated to pa-

rameter randomization, because the output of

the model changes as well.

Localization Localization techniques check

whether the relevant regions of a heatmap co-

incide with the classi�ed object in the image.

Fong et al. propose to use intersection over

union (IOU) between relevant pixel areas and

the classi�ed object [FV17]. Here, bounding

boxes for the object as well as for the relevant

pixels are predicted. Alternatively, Zhang et

al. investigate in a pointing game whether

the most relevant pixel is a pixel of the object

being classi�ed [Zha+18].

Insertion and Deletion Perturbation of

the most relevant pixels should have a neg-

ative e�ect on the prediction score. The au-

thors of [Bac+15] investigate the faithfulness

of explanations by pixel �ipping. Therefore,

Montavon et al. propose to quantify the faith-

fulness by calculating the area under curve

(AUC) [MSM18; Sam+16]. Contrary, it is also

possible to start with an empty input, insert the

most relevant pixels and analyze the increase

in the network’s prediction abilities [PDS18;

HLA21].

Human Interpretability Samek et al.

[Sam+16; Sam+21] propose to quantify human

interpretability in terms of the amount of

information contained in the heatmap for the

image classi�cation setting. They measure the

information amount via the �le size, as a high

associated �le size is more likely to contain

complex features.

Applicability Regarding applicability, it

can be generally compared whether methods

can be applied to all models (model-agnostic)

or only speci�c models (model-speci�c). Fur-

ther, the run time of a method can be crucial

for the application, e.g., when a lot of expla-

nations are necessary. Thus, several works

compare the mean time it takes to generate an

explanation [HLA21; Sam+21].

2 Post-hoc XAI methods
In the following section, the four post-hoc XAI

methods LRP, DeepLIFT, LIME and SHAP are

introduced.

2.1 LRP
Layer-wise Relevance Propagation (LRP) is a

method for explaining neural networks using

backpropagation of attributions. LRP quanti-

�es the relevance of the input as well as all in-

termediate neurons for the output of the model.
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Figure 1: Image classi�cation for the class

“horse”: XAI method explanations (here from

LRP) show that the horse is predicted because

of the copyright text. This suggests that the

training data should be cleaned of watermarks

in order for the network to generalize better.

Source: [Lap+16]

Given an image as input, the explanation can

be visualized as a heatmap, as is possible for all

presented XAI methods (see Figure 1). This of-

fers a visualization of which pixels contributed

positively and which negatively to the decision

of the model.

The idea of LRP is to propagate the output

f (x) backward through the network by using

speci�c propagation rules. The propagation is

subject to a conservation principle, where the

relevance attributed to a neuron will be passed

completely to all lower level neurons.

The general LRP propagation rule is given for

neurons j and k at two consecutive layers of

the neural network. An illustration of the �ow

of relevance across layers in the network is

depicted in Figure 2. Propagation of relevances

Rk to its in the architecture preceding neuron

j is achieved by applying:

Rj = ∑
k

zjk
∑l zlk

Rk (2.1)

Here, zjk models the extent to which neuron j

has contributed to activate neuron k. The de-

nominator ensures the conservation property

∑j Rj = ∑k Rk — meaning the total relevance

is conserved for two consecutive layers of the

model.

For linear layers, followed by a recti�er non-

linearity (ReLU), which is often used in neural

networks such as VGG-16 [SZ14], the basic

propagation rule is given by Equation (2.1) us-

ing zjk = ajwjk with activation aj of neuron j

Figure 2: Relevance is distributed from the out-

put to lower level neurons by applying LRP.

Di�erent rules are applied for the top, cen-

ter and bottom part of the network. Source:

[MSM18]

and weights wjk . Here, the sum in the denomi-

nator also runs over the bias w0k .

The basic LRP rule works as long as the de-

nominator is not close to zero. In general, one

can adapt the propagation rule to improve the

explanations (e.g. by adding a small constant

to the denominator to improve stability). In

fact, it is good practice to use di�erent rules for

speci�c parts of the network (see [Mon+19]

for an overview of rules).

2.2 DeepLIFT
Deep Learning Important FeaTures (DeepLIFT)

[SGK17] is, like LRP, a method that uses attri-

bution backpropagation. Crucial for the ap-

proach is a reference input, which should rep-

resent the state without any information. The

main idea is to compare the activation of each

neuron to its reference activation and to as-

sign contribution scores according to the dif-

ferences.

Let t be the activation of a target output neu-

ron. The di�erence in activation compared

to the reference activation t0 is then given by

Δt = t − t0. DeepLIFT subsequently assigns

a contribution score CΔaiΔt to each input neu-

ron’s change in activation Δai , such that:

Δt = ∑
i
CΔaiΔt .

The di�erence in activation in the target neu-
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ron is assigned to the input neurons. This can

be rewritten in a way that resembles the idea

of partial derivatives. Writing mΔaiΔt =
CΔaiΔt
Δai

leads to

Δt = ∑
i
mΔaiΔtΔai

with the multiplier mΔaiΔt similar to
)y
)ai

in the

sense of �nite di�erences. Having intermedi-

ate neurons yj , one further receives via the

chain rule

mΔaiΔt = ∑
j
mΔaiΔyjmΔyjΔt

For a simple linear layer with output y =
∑i wiai given by weights wi and inputs ai , one

gets the Linear rule

mΔaiΔy = wi

and for a nonlinear layer the Rescale rule

mΔaΔy =
Δy
Δa

. (2.2)

There is also the RevealCancel Rule that ex-

plicitly handles positive and negative contri-

butions and is an approximation to Shapely

Values (see Section 2.4).

2.3 LIME
Local Interpretable Model- Agnostic Explana-

tions (LIME) [RSG16] tries to �nd importance

of contiguous superpixels (patches of pixels)

in an input image towards the output of a neu-

ral network. The idea is to replace the deci-

sion function by a local surrogate model that

is structured in a self-explanatory way (like a

linear model).

In order to have a surrogate model g of model

class G, that is explainable, it should be as

simple as possible. This is represented by a

complexity measure 
. On the other hand,

g should be faithful. The loss term L(f , g, �x )
represents the unfaithfulness of g regarding

the network f in the locality de�ned by �x .

The explanation is then given by minimizing

� (x) = argmin
g∈G

L(f , g, �x ) + 
(g) .

In a simple case, G might be the class of linear

functions, �x a Gaussian distribution and L
incorporates a squared loss. The minimization

takes place via weighted sampling around the

input data.

2.4 SHAP
SHapley Additive exPlanation (SHAP) [LL17]

is an additive feature attribution method. Per-

turbations of the input are used to compute

attributions, based on the concept of Shapley

Values from cooperative game theory.

Given a reference (or baseline) input, a ran-

dom permutation of the input features is added

one-by-one. After each step, the network is

evaluated. The output di�erence after adding

each feature corresponds to its attribution. But

the ordering in which the features are added

is important for nonlinear functions. Thus,

these di�erences are averaged when repeating

this process several times, each time choos-

ing a new random permutation of the input

features.

3 Application to Object De-
tection

In the following section, the introduced meth-

ods are applied to the task of object detection.

Therefore, the model architecture and dataset

are described �rst.

3.1 Model Architecture and
Dataset

The architecture to be investigated is the

Single-Shot Detector (SSD) [Liu+16]. The in-

put of the model is an RGB-image of size

512×512 pixels. The output of the SSD net-

work consists of bounding box coordinates

with class scores. For the backbone, a VGG-

16 [SZ14] is used as a feature extractor. As

can be seen in Figure 3, layer after layer, the

height and width of the intermediate input ten-

sor becomes smaller. The bounding boxes are
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Figure 3: Model architecture of the Single Shot Detector (SSD) network. Source: [Liu+16]

predicted after each layer using a 3×3 convo-

lution. Thus, at earlier stages, the size of the

bounding boxes is smaller. The bounding box

at the last stage (Conv11_2) covers the whole

input image.

The SSD architecture with VGG-16 backbone

consists of convolutions, ReLU activations and

an �2-Norm layer. The �2-Norm layer trans-

forms the input as

ycwℎ = �c
xcwℎ√
∑i x2iwℎ

(3.1)

with weight �c ∈ ℝ and dimensions for the

channel (c), width (w) and height (ℎ) of the

input x . Thus, the �2-Norm normalizes and

scales the input.

The evaluation is done on the Microsoft

Common Objects in Context (COCO) dataset

[Lin+14] which consists of 80 object categories

like car, bicycle, human and dog. For each ob-

ject of an image in the dataset, a segmentation

mask as well as bounding box coordinates are

given.

3.2 Adaption of Methods

The XAI methods DeepLIFT, LIME and SHAP

are implemented using the XAI framework

Captum [N+19] for PyTorch. Due to the lim-

ited implementation of LRP rules in Captum,

the Zennit package [And+21] is used for LRP

instead. In the following, all XAI methods are

adapted to the task of object detection.

3.2.1 LRP

LRP has successfully been implemented for

networks with convolutional layers and ReLU

activations. The �2-Norm layer (see Equa-

tion (3.1)) is a special layer of the SSD model.

In order to obtain optimal results, it is known

that LRP rules need to be carefully aligned to

the layers and their function within the model

[Mon+19; Koh+20]. Simply using the gradient

violates the conservation principle of LRP. In

�rst order Taylor approximation one receives

for a neuron ycwℎ with a reference point x̂
where x̂cwℎ = 0

ycwℎ ≈
�c√

∑i≠c x̂2iℎw
xcwℎ . (3.2)

Thus, in �rst order approximation, the �2-
Norm is scaling the input xcwℎ similarly to an

activation. This leads to the approach of han-

dling the �2-layer like an activation layer and

passing the relevance of neuron xcwℎ to ycwℎ.

In order to achieve optimally interpretable

heatmaps, di�erent rules are tested (see ap-

pendix A for a list of all used rules). To further

improve visualization, the ♭-rule [Bac+16] is

applied for the �rst layer, meaning relevance

is propagated to all pixels inside a neuron’s

receptive �eld. This way, the heatmap is be-

coming softer and features are more visible.

For deep neural networks, it has been shown

that the gradient is noisy, partly due to gradi-

ent shattering [Bal+17]. This is why the ϵ-rule,

which is similar to propagation of the gradi-

ent, results in noisy heatmaps (see Figure 4).

Clearer heatmaps result from the z+ and  -
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input ϵ♭− rule

#!♭− rule $♭− rule

Figure 4: LRP explanations for bounding box

and class of ’bicycle’ using the ϵ,  (0.1), and

z+-rule in combination with the ♭-rule. In

the input image, the bounding boxes for the

ground truth (red) and prediction (yellow) are

depicted.

rule, when applied to all convolutional layers.

Compared to the z+-rule, application of the

 -rule is in this case more sensible, because it

di�erentiates between positive and negative

contributions. As can be seen by comparing

the heatmaps, the z+-rule leads to more parts

of the heatmap receiving relevance, as a lot

of pixels contributed positively in some way

to the output. The  -rule, on the other hand,

leads to more balanced heatmaps in terms of

relevance and is thus used.

3.2.2 DeepLIFT

DeepLIFT supports convolutional and ReLU

layers similar to LRP. Regarding the �2-Norm

layer, the Rescale rule for nonlinear layers (2.2)

is used.

As the authors of [SGK17] suggest for image

data, a Gaussian blurred version of the input

image is used as a reference sample. Therefore,

a standard deviation of 12 corresponding to a

kernel size of 80×80 is chosen in order to blur

small as well as large features.

input vanilla

$ − rule $♭− rule

Figure 5: DeepLIFT explanations for the same

setting as LRP in Figure 4. DeepLIFT without

changes (vanilla) is noisy like LRP with the

ϵ-rule, whereas applying the  (0.1) and ♭-rule

leads to clearer and softer heatmaps.

Using vanilla DeepLIFT, the heatmap is noisy,

like using the LRP ϵ-rule. This can be seen

by comparing Figure 4 and 5. In order to im-

prove heatmap interpretability, the idea of the

LRP  -rule is used for DeepLIFT as well. In

the following, for all convolutional layers, the

positive weights w are favored by a factor of

1 +  , meaning w → (1 +  )w if w > 0. In fact,

the heatmaps appear to become less noisy, as

is depicted in Figure 5. However, noise is not

fully suppressed. This is due to the fact, that

the LRP  -rule further suppresses contradict-

ing contributions, because of the denominator

in Equation (A.3).

In order to further improve visualization and

to be comparable to LRP, the ♭-rule is also ap-

plied to the �rst layer. As can be seen in the

heatmap of Figure 5, features become more

visible and noise is also suppressed.

3.2.3 LIME

The application of LIME consists of four steps:

(1) generation of a random interpretable state,

(2) perturbation of the input image, (3) evalua-

tion and weighting of the result, and (4) �tting
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a surrogate model.

Random State Generation In order to �nd

the relevance of superpixels, an interpretable

data representation is needed. Given n super-

pixels, the interpretable state corresponds to

a vector s of length n with entries either one

or zero. Here, an entry of one corresponds

to a superpixel being visible and unperturbed.

A state vector s ∈ {0, 1}n, being aligned to

the image superpixels, is generated by draw-

ing n-times from a Bernoulli distribution with

probability p = 0.5.
Regarding superpixel generation, the Simple

Linear Iterative Clustering (SLIC) algorithm

is used [Kim19] (see Figure 6 for an example).

SLIC has been shown by Schallner et al. to

be an e�ective algorithm for large and com-

plex images using LIME [Sch+19]. In order to

detect small objects in the heatmap, a resolu-

tion of n = 250 is chosen for the 512×512 pixel

input.

Image Perturbation For real world images,

it is hard to de�ne a baseline image in gen-

eral. A part of the image cannot be simply

removed. The standard approach for LIME

is setting the pixel values to the mean pixel

value of the whole training data set (results in

a gray color) [RSG16]. Other approaches con-

sist of using the mean color of the superpixel,

uniform noise, Gaussian blur or in-painting

techniques.

Because edges contain a lot of information, an

ideal perturbation would remove the edges.

Color can contain also information, but by

perturbing color, additional edges might be in-

serted. Thus, it is sensible to use an in-painting

technique that preserves color rather than in-

troduces new edges [ASN20]. However, be-

cause in-painting is a complex task, the run

time is increased. Using gray pixels is a fast

approach, and introduces on average less new

edges than any other color, because it repre-

sents the mean color of the data set. In the

following, perturbation using gray color is al-

ways chosen for LIME.

Figure 6: Example for SLIC generated super-

pixels used for LIME and SHAP heatmaps.

Weighting LIME is �tting an explainable (in

general linear) model to a local neighborhood

around a to-be explained sample of interest. In

order to improve locality, the evaluations of

the model are weighted regarding the amount

of perturbation. Here, the distance metric is

described by the cosine distance. Flattening

the image tensors, the cosine distance is given

by

d(x⃗ , z⃗) = 1 −
x⃗ ⋅ z⃗
‖‖x⃗‖‖‖‖z⃗‖‖

,

with unperturbed image vector x⃗ and per-

turbed vector z⃗.

The weight w of the perturbed sample is cal-

culated by using a squared exponential kernel

with kernel width k:

w = e−
d2
k2 .

A smaller kernel value k will result in a

stronger focus on local samples, while using

fewer samples with a high distance d . In the

following, the default kernel value k = 1 is

chosen, such that w ∈ [1/e, 1].

Fitting The �t function is chosen to be a lin-

ear function, where the weights are calculated

solving a Ridge regression problem. In order

to have enough data to receive a heatmap with
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Figure 7: Standard deviation of heatmap su-

perpixels (averaged over 10 samples) in rela-

tion to the number of steps n for LIME and

SHAP. Error bars represent the standard error.

The more steps (or forward passes) used in

heatmap generation, the lower the standard

deviation.

low variance, the number of samples is set to

1000. The decrease in variance of the heatmap

for all superpixels (averaged over 10 samples)

is displayed in Figure 7. It can be seen that the

variance is slowly converging for a number

of steps larger than 500. After determination

of the coe�cients of the linear function, the

heatmap values are normalized to the interval

[−1, 1] by scaling.

3.2.4 SHAP

In order to resolve smaller objects in the

heatmap and to be comparable to LIME, also

n = 250 superpixels generated by the SLIC

algorithm are used. Compared to �xed-size su-

perpixels (e.g., squared superpixels), free-form

SLIC superpixels have the advantage of being

better aligned to the geometry of the input fea-

tures. Thus, free-form superpixels are more

informative and can better perturb both small

and large features.

Further, the baseline is set to a gray image

(mean color of the dataset) for the reasons dis-

cussed in Section 3.2.3. Regarding the number

of steps, similar to LIME, SHAP is run four

times corresponding to 1000 steps/forward

passes. In this case, the heatmaps are devi-

ating as much as for LIME (see Figure 7).

4 Comparison of methods
After adaption to the object detection task, the

methods are in the following compared regard-

ing human interpretability, faithfulness and

applicability.

4.1 Human Interpretability
De�ning or quantifying interpretability is

challenging, because of its subjective nature

[Sam+21]. Regarding an explanation, an ex-

pert expects more complex answers compared

to a novice, who requires higher-level infor-

mation. Given image data, the granularity of

the heatmap represents the degree of detail

and amount of information in the explanation.

An explanation with a high granularity could

depict speci�c features, like eyes or noses, com-

pared to an explanation with low granularity

showing coarser features, e.g., an entire head.

Measuring the information contained in an

image can be done using the Shannon en-

tropy e [GS85]:

e = −∑
i
pi log2 pi (4.1)

with probability pi of a pixel to have relevance

value ri ∈ . Here,  is the set containing all

relevance values of an explanation.

method single pixels superpixels

LRP 11.2 ± 0.5 6.67 ± 0.25
DeepLIFT 12.4 ± 0.5 6.28 ± 0.21
LIME 7.81 ± 0.03
SHAP 6.30 ± 0.21

Table 1: Shannon entropy of heatmaps for all

investigated XAI methods (averaged over 100

samples). LRP and DeepLIFT relevances are

considered pixel-wise, as well as grouped into

the SLIC superpixels used for LIME and SHAP.
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LRP

Deep
LIFT

SHAP
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Figure 8: Explanations for eight bounding box class predictions (top row) with class name.

Methods are LRP- (0.1), DeepLIFT- (0.1), SHAP and LIME from top to bottom.

As can be seen in Figure 8, LRP and DeepLIFT

result in heatmaps with �ner details compared

to SHAP and LIME. This is also represented

in entropy values of more than 11 for LRP

and DeepLIFT, compared to LIME with about

7.8 and SHAP with 6.3 (see Table 1). Here,

the slightly higher entropy value of DeepLIFT

with 12.4±0.5 compared to LRP with 11.2±0.5
might be resulting from the visually more

grainy heatmaps of DeepLIFT (see Figure 8).

The lower entropy value of SHAP compared

to LIME follows from the di�erence in both

algorithms. For SHAP, superpixels outside the

receptive �eld of the output neuron do not con-

tribute to the output, when individually added

to the baseline image, and thus receive no rele-

vance. However, for LIME, multiple superpix-

els are perturbed at the same time. Thus, also

superpixels outside the receptive �eld receive

relevance, as can be seen for the second image

in Figure 8. Even if relevances are small, they

count regarding the Shannon entropy (4.1). In

fact, assuming that all 250 superpixels receive

a di�erent relevance value leads to an entropy

of e = − log2(
1
250 ) ≈ 7.97, which is similar to the

experimental LIME value of 7.81 ± 0.03. This

e�ect also leads to a similar entropy for all

LIME heatmaps, as is represented by a smaller

standard error of 0.03 compared to SHAP with

0.21.

When LRP and DeepLIFT relevances are

grouped into the superpixels used for LIME

and SHAP, the entropy values are closer to

SHAP with about 6.7 and 6.3, respectively.

This is expected, as superpixels outside the

receptive �eld of the output neuron also re-

ceive no relevance, because only contributing

neurons are considered in the backward pass

computation.

The fact that relevances, which are not per-

ceptible by a human, in�uence the entropy

shows, that the Shannon entropy is not an op-
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+ = 0 + ∼ .(0,10"#)

Figure 9: Entropy of a heatmap without noise

(left) and with uniformly distributed noise

" ∼ U (0, 10−3) (right). Although being visually

barely distinguishable, the heatmap’s entropy

e di�ers strongly.

timal measure for human interpretability. This

is visually shown in Figure 9, where a small

amount of noise strongly in�uences Shannon

entropy. A better human interpretability mea-

sure would be based on a human perceptual

model or on cognitive experiments [Lag+19].

4.2 Faithfulness
Regarding faithfulness, it is important to inves-

tigate, whether relevant pixels of a heatmap

are actually relevant for the prediction output.

In order to check and compare faithfulness, a

pixel-�ipping and localization experiment is

performed in the following.

4.2.1 Pixel-�ipping

In the pixel-�ipping experiment, starting with

the most relevant pixels, all pixels are suc-

cessively set to zero (gray color). Measuring

the prediction (output) score, a faithful ex-

planation is represented by a low area under

curve (AUC). As depicted in Figure 10, all meth-

ods in the pixel-�ipping experiment are sim-

ilarly faithful, and outperform random selec-

tion. Here, the curves of the backpropagation-

based methods are characterized by a slightly

stronger decrease in the output score com-

pared to the perturbation-based methods. This

is expected, because LRP and DeepLIFT re-

solve small scale features better. Features

are thus perturbed earlier than for SHAP and

LIME.
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Figure 10: Pixel-�ipping experiment: output

(prediction) score over amount of relevant pix-

els set to gray for all XAI methods and random

selection. LRP and DeepLIFT relevances are

considered pixel-wise. The standard error re-

sulting from 100 samples is depicted in light

gray.

Measuring the area under curve (AUC),

DeepLIFT achieves the best value with 0.79

compared to 1.06 for the other methods. One

reason for DeepLIFT to perform better than

LRP (despite the similar heatmaps) consists in

an increased granularity of the heatmaps (see

Figure 8) leading to a more extensive pertur-

bation of features.

In order to compare the methods on the

same heatmap resolution, the relevances for

DeepLIFT and LRP are also grouped into the

superpixels used for LIME and SHAP. Per-

forming the pixel-�ipping experiment again,

the backpropagation-based methods achieve

now higher AUC values of 1.83 (LRP) and 1.80

(DeepLIFT), as can be seen in Figure 11 and

Table 2. The reason for the lower AUC score

might be two-fold.

On the one hand, while applying rules favoring

positive contributions for LRP and DeepLIFT,

negative contributions are slightly suppressed.

When perturbing the missing negative rele-

vant superpixels, the output score is thus in-

creased.

Further, the perturbation-based methods are
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Figure 11: Pixel-�ipping experiment: output

(prediction) score over amount of relevant pix-

els set to gray for all XAI methods and random

selection. LRP and DeepLIFT relevances are

grouped into the SLIC superpixels used for

LIME and SHAP. The standard error resulting

from 100 samples is depicted in light gray.

optimized for the usage of superpixels and the

procedure of the pixel-�ipping experiment. In

fact, SHAP and LIME work exactly by inves-

tigating how the perturbation of all features

inside a superpixel directly in�uence the out-

put score.

It is to note, that a reduction of noise in

heatmaps is crucial for the pixel-�ipping exper-

iment. Noise leads to relevant features receiv-

ing both negative and positive scores, i.e., parts

method single pixels superpixels

LRP 1.06 1.83

DeepLIFT 0.79 1.80

LIME 1.06

SHAP 1.06

random 5.41

Table 2: Area under curve (AUC) of the pixel-

�ipping experiment for all XAI methods and

random selection. LRP and DeepLIFT rele-

vances are considered pixel-wise, as well as

grouped into the SLIC superpixels used for

LIME and SHAP.

of a heatmap (being actually solely positively

relevant) also constitute of negative relevance.

As a result, a method’s curve in Figure 10 is

described by a high plateau that is only de-

creasing when the (falsely) negative relevant

pixels are perturbed.

4.2.2 Localization

Inspired by other works [FV17; Zha+18], faith-

fulness can be investigated by the amount of

relevance inside the bounding box of a classi-

�ed object. The idea is, that the model pays

attention mostly to the object it is predicting.

This is assumed in the following, but is not

always the case and depends on the model’s

functioning, as can be seen in Figure 1.

Aiming for a high amount of relevance inside

bounding boxes, LRP and SHAP achieve the

best results, with approximately 67 % of all pos-

itive relevance inside a bounding box (see Ta-

ble 3). DeepLIFT and LIME attain lower scores

with around 64 and 57 %, respectively. Here,

LIME results with the lowest score, possibly

because of the already discussed fact, that su-

perpixels outside the receptive �eld receive

relevance.

For DeepLIFT, the higher granularity of the

heatmaps, compared to LRP, might result in

pixels with relevance outside a bounding box.

This can be seen in the �fth image of Figure 8,

where relevant pixels lie outside the bounding

box for class ’bicycle’.

method single pixels superpixels

LRP 67.2 ± 2.2% 62.3 ± 2.5%

DeepLIFT 63.8 ± 2.5% 59.9 ± 2.5%

LIME 57.3 ± 2.5%

SHAP 66.9 ± 2.5%

Table 3: Amount of relevance within the

bounding box of interest for all investigated

XAI methods (averaged over 100 samples).

LRP and DeepLIFT relevances are considered

pixel-wise, as well as grouped into the SLIC

superpixels used for LIME and SHAP.
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In general, it is expected, that the

backpropagation-based methods perform

better than perturbation-based methods,

because of the size of the superpixels. Large

superpixels that cover relevant features might

protrude beyond the borders of a bounding

box. This e�ect can be seen when repeating

the localization experiment with all relevances

being aggregated into the SLIC superpixels.

The scores for LRP and DeepLIFT drop around

5 and 4 %, respectively (see Table 3).

4.3 Applicability

Applicability can be a key criterion for the

application of XAI. SHAP and LIME are pop-

ular in industry [LPK21], because they are

model-agnostic, intuitive and easy to imple-

ment. DeepLIFT and LRP on the other hand

require adaption to complex model architec-

tures. This is also the case for the �2-Norm

layer of the SSD model.

However, DeepLIFT and LRP use a modi�ed

backward pass to calculate the explanations

and thus can also be used to extract relevances

of intermediate neurons and weights. This can,

for example, be used for pruning [Yeo+21] or

quantization [SHT21].

Further, modi�ed backward passes are an ef-

�cient and fast way to calculate relevances.

Because of the input image size of 512×512 pix-

els, SHAP and LIME require a high number

of superpixels and consequently many sam-

ple perturbations for stable heatmaps. In fact,

the run time per explanation is more than two

magnitudes larger for SHAP and LIME com-

pared to DeepLIFT and LRP (see Table 4).

Even though LIME and SHAP use the same

amount of perturbation samples, namely 1000,

LIME requires about 50% more time compared

to SHAP. This is, for example, caused by the

sample weighting and the �nal linear �tting

step. The run time evaluation is performed

using an NVIDIA Titan V graphics card.

method time per explanation

LRP (110.5 ± 1.2)ms

DeepLIFT (96.7 ± 0.9)ms

LIME (38.8 ± 0.8) ⋅ 103 ms

SHAP (25.2 ± 1.0) ⋅ 103 ms

Table 4: Mean run time for all investigated XAI

methods (averaged over 100 samples). For bet-

ter comparison, the Captum implementation

of LRP is used.

5 Conclusion
Whereas LIME and SHAP are model-agnostic,

DeepLIFT and LRP require to be adapted to

the SSD architecture, i.e., the �2-Norm layer.

However, for LIME and SHAP, several parame-

ters such as the number of perturbation steps,

perturbation technique or superpixel size have

to be chosen. It still remains an open question

how image data is ideally perturbed. Setting

pixels to gray color is a fast and simple tech-

nique, but introduces artifacts and thus departs

from the data manifold.

The perturbation-based XAI methods LIME

and SHAP compute a prediction for each per-

turbation. In contrast, the backpropagation-

based methods DeepLIFT and LRP require only

one forward and backward pass. This leads to

a more than two magnitudes lower run time

per explanation. Run time can be a key factor,

when hundreds of samples or whole datasets

are to be explained.

The standard rules for LRP and DeepLIFT are

not ideal for deep neural networks, such as

SSD, because of gradient shattering leading

to noisy heatmaps. Where LRP o�ers ex-

tended rules (e.g.,  -rule) to tackle the prob-

lem, DeepLIFT’s implementation in Captum

does not o�er any such solution yet. In order

to improve explanations, DeepLIFT has been

modi�ed, similar to the LRP  -rule: Positive

contributions are favored by scaling positively

contributing weights. This modi�cation leads

to clearer heatmaps, however noise is not fully

suppressed. The LRP  -rule does not only fa-

vor stronger contributions, but also suppresses

12



contradicting outputs. This is not achieved by

mere scaling of weights. DeepLIFT explana-

tions can be further improved regarding noise

and visibility using the LRP ♭-rule. All in all,

the application of the LRP rules to DeepLIFT

lead to a similar performance as LRP in all com-

parison tests. It is to note, that an implemen-

tation of the RevealCancel rule for DeepLIFT

in Captum might also improve heatmaps.

To summarize, all methods have been shown

to be faithful in the experiments, with

perturbation-based methods being easier

to apply for complex architectures than

backpropagation-based methods. Here, appro-

priate hyperparameters and propagation rules

are crucial. However, the backpropagation-

based methods DeepLIFT and LRP are more

e�cient and heatmaps visualize individual fea-

tures, as they are not limited by a superpixel

size.
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A LRP-rules
All used LRP-rules are listed in the following.

ϵ-rule Using the ϵ-rule is close to propa-

gation of the gradient through the network.

Only neurons with a very small output are

suppressed by the ϵ term in the denomina-

tor. Here, ϵ is of the same sign as the output

zk = ∑0,j ajwjk with activation aj and weight

wjk . The ϵ-rule is given by

Rj = ∑
k

ajwjk

∑0,i aiwik + ϵ
Rk . (A.1)

 -rule In a deep neural network with ReLU

non-linearities, the  -rule is used to suppress

the noise in the heatmap:

Rj = ∑
k

aj(w−
jk + (1 +  )w+

jk)
∑0,i ai(w−

ik + (1 +  )w+
ik)

Rk (A.2)

with  > 0 in order to strengthen the posi-

tive contributions. Here,
+

and
−

denote all

positive or negative values, respectively.

z+-rule In a deep neural network, the z+-
rule is strongly suppressing noise in heatmaps

by only following positively contributing acti-

vations throughout the network.

Rj = ∑
k

(ajwjk)
+

∑0,i(aiwik)+
Rk . (A.3)

15


	Introduction
	Related Work

	Post-hoc XAI methods
	LRP
	DeepLIFT
	LIME
	SHAP

	Application to Object Detection
	Model Architecture and Dataset
	Adaption of Methods
	LRP
	DeepLIFT
	LIME
	SHAP


	Comparison of methods
	Human Interpretability
	Faithfulness
	Pixel-flipping
	Localization

	Applicability

	Conclusion
	LRP-rules

